.

»

ﬁi}.ﬂ/fng.

1l of 6

CRITERIA FOR SOFTWARE MODULARIZATION

pavid N. Card* - Gerald T. Page* - Frank E. McGarry**

*Computer Sciences Corporation, Silver Spring, MD 20910
**National Aeronautics and Space Administration, Greenbelt, MD 20771

ABSTRACT

A central issue in programming practice involves
determining the appropriate size and information
content of a software module. This study at-
tempted to determine the effectivenesa of two
widely used criteria for software modulariza-
tion, strength and size, in reducing fault rate
and development cost. Data from 453 FORTRAN
modules developed by professional programmers
were analyzed. The results indicated that mod-
ule strength is a good criterion with respect to
fault rate, whereas arbitrary module size limi-
tations inhibit programmer productivity. This
analysis is a first step toward defining empiri-
cally based standards for software modulariza-
tion.

INTRODUCTION

The module is the basic unit of software devel-
opment, maintenance, and management. A basic
activity of the software design process is the
partitioning of the software specification into
a number of program modules that together sat-
isfy the original problem statement. To do
this, programmers need criteria for defining the
information content and organization of modules.

The major theoretical criteria for software mod-
ularization include strength/cohesion and cou-
plingl and information hiding.2 These criteria
are, however, difficult to quantify. An inde-
pendent observer of the development process can-
not easily determine the levels of strength,
coupling, and information hiding achieved in any
given module. The use of these concepts is thus
limited in an environment where quality assur-
ance (as adherence to standards) is stressed.

Measures of size (number of source lines of code
or executable statements) have consequently been
adopted as a simple expedient.3 Although many
benefits have been claimed for module size limi-
tations, at present there is no theoretical
basis or empirical evidence for using module
size as a criterion for software modulariza-
tion. 4

The purpose of this study was to compare the
effectivenesa of size (e.g., a 60-line-module
standard) and a theoretically based measure
(strength) as criteria for software modulariza-
tion. Strength (or singleness of purpose) was
chosen for this comparison because, like size,
it can be determined from the contents of a
single module. Measuring coupling or informa-
tion hiding requires that more than one module
at a time be examined.

This study, therefore, compares the effective-
ness of module strength and size criteria with
respect to module cost and fault rate. Although
maintainability (or modifiability) is another
important software attribute, it was not pos-
sible to measure or analyze it in this study.
Because some programmers generally produce low-
fault, low-cost modules while others produce
expensive, faultprone modules, it was also nec-
essary to investigate the interaction of these
Ccriteria with individual programmer performance.

DATA ANALYZED

This study examines data from 453 new FORTRAN
modules developed by 26 professional programmers
for S major software development projects. The
term "module” has been defined in many different
ways. For the purposes of this study, it refers
to a FORTRAN subroutine, or the smallest program
unit that is independently compilable. Although
more sophisticated languages are available, many
organizations rely on FORTRAN for scientific
computing applications. This study is thus
relevant to current practice. Furthermore,
these modularization criteria seem likely to
remain important considerations in software
development using new languages such as Adat
(for which extensive data are not yet available).

The Software Engineering Labo:atozys (SEL) col-
lected these data as part of an ongoing program
of software measurement and technology evalua-
tion. The SEL is a research project sponsored
by the National Aeronautics and Space Adminis-
tration/Goddard Space Flight Center (NASA/
GSFC) and supported by Computer Sciences Corpo-
ration and the University of Maryland. The SEL

+Ada is a registered trademark of the
U.S. Government, Ada Joint Program Office.

4-16

studies software developed for spacecraft flight
dynamics applications. These systems provide
ground-based support for spacecraft navigation
and control. Typical projects produce from
30,000 to 150,000 source lines of code.

Module Strength

Myers6 defines seven levels of module strength.
In descending order, these are functional, in-
formational, communicational, procedural,
classical, logical, and coincidental. A high
(functional) -strength module performs a single
well-defined function. Myers contends that
high-strength modules are superior to low-
strength modules. Although it was not possible
to test this theory exactly, a reasonable ap-
proximation was made. Although some recent
attempts to develop objective measures of module
strength7'3 seem promising, they are not (in
their present forms) easily applied. Conse-
quently, they were not employed in this study.

Instead, programmers determined the strength of
a module using a checklist. Programmers rated
each module they developed as performing one or
more of the following functions: input/output,
logic/control, and algorithmic processing. Dis-
tinguishing the types of functions seemed to be
a less ambiguous task than identifying the number
of functions, because the number of functions
depends on the level of decomposition rec-
ognized by the respondent. Performing a single
function type is a necessary (but not suffi-
cient) condition for high module strength.

Those modules described as having only one func-
tion were classified as high strength; those
described as having two functions were classi-~
fied as medium strength; and those modules de-
scribed as having three or more functions rated
low strength. Table 1 summarizes the results of
this classification process.

Table 1. Module Strength Distribution

MEAN
NUMBER OF MEAN
sYRengTw | FORTRAN' | excutAste | CECUTRSlE
STATEMENT
Low 90 n 0.29
MEDIUM 176 60 0.32
HIGH 187 48 0.32

Module Size

The 453 modules in the sample were classified
into three approximately equal ordered groups on
the basis of the number of executable statements
in each module. Table 2 shows the results of
this classification.

The largest module in the sample contained 267
executable statements. The dividing line of 31
executable statements is significant because, in
the environment studied, it corresponds to about
60 source lines of code. Many programming
standards3 limit module size to one page {(or

50 to 60 source lines of code). The informal

2 of 6

guideline used in this environment is that no
module should exceed 2 pages (about 64 execut-
able statements). Military standards on module
size range from 50 to 200 executable state-
ments.4 One purpose of the study was to test
the validity of such standards, in general, and,
in particular, to determine if the local guide-
line should be strengthened.

Table 2. Module Size Distribution

MEAN
mooute | NUMBEROF | executasLe | DEcISIONS PeR
SIZE FORTRAN | STATEMENTS | EXECUTABLE

STATEMENT
SMALL 154 17031 03
MEDIUM 148 2TOM 031
LARGE 151 € OR MORE 0.2

ANALYSIS RESULTS

The objective of the analysis was to determine
the effect of module size and strength criteria
on quality measures, that is, the module cost
(number of hours per executable statement) and
fault rate (number of faults per executable
statement). An initial examination of the data
revealed that neither module cost nor fault rate
was normally distributed. Pigures 1 and 2
illustrate these phenomena. Consequently, the
authors adopted contingency table and nonpara-
metric correlation approaches to the analysis
rather than relying on normal-distribution-based
techniques such as regression and analysis of
variance.

To perform the contingency table analysis, every
module was assigned to one of three ordered
classes (of nearly equal size) for each of the
quality measures of cost (low, medium, high) and
fault rate (zero, medium, high). The values
0.151 and 0.322 programmer hour per executable
statement divided the modules into the three
cost classes (i.e., 0.151 or less was low

cost). PFaults were counted for each module from
the completion of unit testing until the end of.
acceptance testing. The value 0.045 fault per
executable statement distinguished between
medium= and high~fault-rate classes. One class
consisted of those modules with no faults. It
was thus possible to form a series of 3-by-3
tables, each comparing classes of module strength
or size with classes of module cost or fault
rate.

The strength of relationships was asgessed by
calculating the gamma (y) cofrelation statis-
tic? between the ordered classes of modulari-
zation criteria and quality measures. This
statistic varies from -1.0 to +1.0. For example,
a perfect negative correlation (~1.0) would re-
sult only if all high-strength modules had zero
faults, all medium—strength modules had medium
fault rates, and all low-strength modules had
high fault rates. Variations in programmer per-
formance also affect module cost and fault

rat ; therefore, this factor was also con-
sidered in the general analysis as well as in a
subsequent analysis.

4-17

General Results

Initially, module strength and size were cross-
tabulated with cost and fault rate. Lines 1 and
4 of Table 3 list the correlation coefficients
obtained from this analysis. Significant rela-
tionships were found between module strength and
fault rate (v = ~0.35) and between module size
and cost (y = -0.31). The criterion for sig-
nificance (probability of error less than 0.001)
is very conservative. These correlations seem
low, but Figures 3 and 4 provide better illus-
trations of the magnitude of these relation-
ships. Fully 50 percent of high-strength

modules were fault-free while only 18 percent of

low-strength modules were fault~free. Simi-
T
B
R MODE = 0.10
MEDIAN =~ 0.23
Bl MEAN = 0.37

MAXIMUM = 5.8

PERCENT OF MODULES
8
L]

3 0f 6

0 0.1 0.2 03 04 0S5 0.8 0.7 0.8
HOURS PER EXECUTABLE STATEMENT

Figure 1. Distribution of Cost
QO -
|
nk MODE = 0.0
MEDIAN = 0.02
2| MEAN = 0.08

MAXIMUM = 0.92

R
T

PERCENT OF MODULES
8
—

1]

0 0.02 004 008 008 010 0.12 0,14
FAULTS PER EXECUTABLE STATEMENT

Figure 2. Distribution of Faults

0.92

larly, 46 percent of large modules fell into the
lowest cost class, whereas just 22 percent of
the small modules were rated as low cost.

Table 3. Contingency Table Results

a
EFFECT CORRELATIONS
CRITERIA CONTROLLED LINE
FAULT RATE | COST RATE
MODULE NONE -0.35° -0.19 1
STRENGTH | g1 7¢ -0.:2b -02m® 2
PROGRAMMER -0.21 0.10 3
MODULE NONE 0.20 -0.31° 4
SIZE STRENGTH 0.19 -0.38b 5
PROGRAMMER 0.77° ~g.410 6

3GAMMA (y) STATISTIC.
BpROBABLY LESS THAN 0.001 THAT CORRELATION IS ACTUALLY ZERO.

Table 1 indicates, however, that module strength
and size might be related to each other. Low-
strength modules tend to be larger. Lines 2 and
5 of Table 3 show the (partial) correlations
obtained for module strength and size individ-
ually while controlling (removing) the effect of
the other. The relationships with module fault
rate remain essentially unchanged. There is,
however, some interaction between module strength
and size with respect to module cost. (Compare
line 1 versus line 2 and line 4 versus line 5 in
Table 3.)

Controlling for module size, the correlation
between module strength and cost increases from
-0.19 to -0.27 and becomes significant. Con-
trolling for module strength, the correlation
between module size and cost increases from
-0.31 to -0.38. These results imply that, over~
all, high-strength modules (usually small) tend
to be low cost but that large modules also tend
to be low cost (independent of module strength).
Another studyll identified a similar relation-
ship between module size and cost for a very
different type of software.

One previous studylz that found a lower fault
rate for larger modules based its conclusions on
the behavior exhibited by a small sample of
large modules. Another studylo applied paranm-
etric regression to a larger sample from the
same data base as this study. As discussed
earlier, that statistical approach is inappro-
priate for non-normally distributed data.
Although these results contradict the two
previous studies of fault rate, the current
results appear to be more robust.

Thus far, the potential effects of programmer
performance were ignored. Lines 3 and 6 of
Table 3 show the correlations between the mod-
ularization criteria and quality measures ob-
tained while controlling for the effect of
programmer performance. (The interaction of
module size and strength is, however, no longer
controlled.) The large changes from the initial
correlations demonstrate that programmer per-
formance interacts with both module size and
strength. The disappearance of the significance
of the relationahips between module strength and

4-18

4 of 6

MEDIUM
A%

HIGH
STRENGTH

Figure 3.

MEDIUM
29%

HIGH 35%

MEDIUM
STRENGTH

Fault Rate for Classes of Module Strength

MEDIUM
39%

MEDIUM
38%

LOW
STRENGTH

HIGH 48%

e

SMALL
{1 TO 31 EX STMT}

™
MEDIUM
{65 EX STMT) 132 TO 64 EX STMT)
Figure 4. Development Cost for Classes of Module Size

module cost and fault rate indicates that these
relationships exist because high-strength mod-
ules are associated with programmers who produce

modules that cost less and have low module fault
rates.

Programmer-Specific Results

The effect of programmer performance was also
examined in a subsequent analysis. Of the

26 programmers in the sample, 16 developed 9 or
more modules. Together these programmers ac—
counted for 413 of the total 453 modules. The
performance of these programmers was reanalyzed
using nonparanmetric correlation? to better
define the relationship of programmer perform-
ance to modularization criteria. Table 4
summarizes the data obtained from the

16 programmers.

For each of these programmers, the percent of
zero~fault and low~cost modules was computed.
Table 5 shows the correlations (by programmer)
between the modularization criteria and the
quality measures. Programmers who produce low-
fault-rate modules (i.e., "good" programmers)
tend to produce high-strength modules. Good
programmers do not, however, appear to have any
preference for a particular module size. The
lower significance levels associated with the
correlation coefficients result from the reduc-
tion in sample size produced by studying 16 pro-
grammers instead of 453 modules.

Table 4. Programmer Data Summary

MEAN
NUMBER OF MEAN
PROGRAMMER | FORTRAN | execuTAsLe | DECISIONS PER
MODULES | STATEMENTS | SSECUTABLE
A % “ 0.3
8 > o 0.3
c > 57 0.40
0 = 80 0.3
E 9 53 0.23
F s 51 0.3
G 2 & 0.1
H B 7 0.3
| 18 7 0.29
J 50 s 0.
K 7 @ 0.41
L w0 a8 031
M 13 o4 0.39
N 9 % 0.3
) 18 38 0.30
P 9 53 0.34
Table 5. Nonparametric Correlation Results

(by Programmer)

CORRELATIONSS
CRITERIA
FAULT RATE COST RATE
MODULE STRENGTH -0.53° -0.29
MODULE SIZE -0.17 ~0.18

3aSPEARMAN CORRELATION COEFFICIENT.
PPROBABILITY LESS THAN 0.06 THAT CORRELATION IS ACTUAL-

LY ZERQ.

4-19

5 of 6

Pigure 5 illustrates the relationship between ° Overall, large modules cost less (per
module strength and the fault rate. Although executable statement) than small mod-
the trend is clear, a great deal of unexplained ules.
variation is also present. Good programming
consists of more than just writing high-strength [) Fault rate is not directly related to
modules. module size.
100 = These conclusions suggest that module size
should not be arbitrarily limited by any pro-
Wk gramming standard. Two-thirds of the modules in
this sample fell below the local size guideline
of two pages (about 64 executable statements),
%oF H P even though this is not an enforced standard.
As noted by Bowen4, the application of a good
nr design methodology usually results in modules
@ o B N E well below the common size limits.
3 ep PP
£ ,4”K Generally, programmers should be encouraged to
§ 50{- ’,f’ write high-strength modules but to make those
~ ,,’ F modules large enough to encompass an entire
& ok .- function. Because low-strength modules are
% : - likely to be larger than average, a module size
= - 4 criteria may have an indirect favorable effect
30:—-” on the fault rate. However, the cost advantages
A associated with larger modules dictate that
20r L large, high—-strength modules must also be ac-
0 M G ceptable. Large modules may be appropriate for
0P some types of software (for example, mathe-
c matical algorithms).
] ' b)) I | '} —t

. [l .
v ¥ 2 4«4 50 & 7 8 0 00 Programmers, especially the less experienced ~

PERCENT HIGH STRENGTH ones, should be encouraged to write high-
strength modules because this is a character-
Figure 5. Module Strength and Faults by istic of successful programmers. The further
Programmer ' development of objective measures of module

strength may make this criterion more palatable
to organizations that use formal quality assur-
ance procedures. A better measure of module
strength should show an even higher correlation
. with fault rate. In the interim, a simple
CONCLUS IONS - checklist of the number of types of functions

performed can provide a simple but effective
The preceding discussion examined the relation- assessment of strength for quality assurance
ship between modularization criteria and quality purposes.

measures from two perspectives: their overall
effect and the contribution of individual pro-

grammer performance. Conclusions based on the REFERENCES

contingency table analysis (lines 2 and 5 of

Table 3) are correct as stated. Finding that [1] W. P. Stephens, G. J. Meyers, and

programmer performance accounts for some of the L. L. Constantine, "“Structured Design,*®

strength of these relationships does not affect IBM Systems Journal, 1974, vol. 13, no. 2,

their validity. However, this result does high- pp. 115~139

light the difficulty of separating the effects

of programmer performance from those of tech- [2] D. L. Parnas, "On the Criteria to be Used

nology or ruet:h::.u:lolr:)gy.13 Furthermore, it in Decomposing Systems into Modules," ACM

enables us to learn about software development Communications, December 1972, vol. 15,

in the way that Soloway“ prescribes, by ob- no. 12, pp. 1053-1058

serving what good programmers do. Conclusions

based on the preceding analysis are as follows: [3] B. W. Kernighan and P. S. Plauger, The
Elements of Programming Style. New York:

[Good programmers tend to write high- MCGraw Hill, 1974, p. 126

strength modules.
{4] J. D. Bowen, "Module Size: A Standard or

® Good programmers show no preference for Heuristic?,"” Journal of Systems and Soft-
any specific module size. ware, 1984, no. 4, pp. 327-332

[)] Overall, high-strength modules have a [S}] D. N. Card, P. E. McGarry, G. T. Page, et
lower fault rate and cost less than al., The Software Engineering Laboratory,
low-strength modules. NASA/GSFC, February 1982

(6]

{71

(8l

[91]

(10]

G. J. Myers, Comggsite(Structured Design.

New York: Van Nostrand Reinhold, 1978

R. D. Cruickshank and J. E. Gaffney,
"Measuring the Development Process: Soft-
ware Design Coupling and Strength
Matrices,” Proceedings of the Fifth
Annual Software Engineering Workshop,
NASA/GSFC, November 1980

T. J. Emerson, "A Discriminant Metric for
Module Cohesion," Proceedings of the
Seventh International Conference on Soft-
ware Engineering, 1984, pp. 294-303

L. A, Marascuilo and M. McSweeney, Non-
parametric and Distribution Free Methods
for the Social Sciences. California:
Brooks/Cole, 1977, pp. 466-471, pp. 431-435

F. E. McGarry, "Measuring Software Devel-
opment Technology,"” Proceedings of the
Seventh Annual Software Engineering Work-
shop, NASA/GSFC, December 1982

6 of 6

{11]

12}

[13]

{14]

P. C. Belford, R. C. Berg, and

T, L. Hannan, “"Central Flow Control Soft-
ware Development: A Case Study of the
Effectiveness of Software Engineering
Techniques,” Proceedings of the Fourth

International Conference on Software Engi-
neering, September 1979, pp. 85-93

V. R. Basili and B. T. Perricone, "Soft-
ware Errors and Complexity: An Empirical:
Investigation,” ACM Communications,
January 1984, vol. 27, no. 1, pp. 42-52

D. N, Card, F. E. McGarry, and G. T. Page,
"Evaluating Software Engineering Tech~
nologies,” Proceedings of the Eighth

Annual Software Engineering Workshop,
NASA/GSFC, November 1983

D. Littman, K. Ehrlich, E. Soloway, and
J. Black, "You Can Observe a Lot by Just
Watching How Designers Design," Proceed-

ings of the Eighth Annual Software Engi-
neering Workshop, NASA/GSFC, November 1983

